Modelling the peroxisomal carbon leak during lipid mobilization in Arabidopsis.

نویسندگان

  • Mark A Hooks
  • Elizabeth Allen
  • Jonathan A D Wattis
چکیده

Mutation of the ACN1 (acetate non-utilizing 1) locus of Arabidopsis results in altered acetate assimilation into gluconeogenic sugars and anapleurotic amino acids and leads to an overall depression in primary metabolite levels by approx. 50% during seedling development. Levels of acetyl-CoA were higher in acn1 compared with wild-type, which is counterintuitive to the activity of ACN1 as a peroxisomal acetyl-CoA synthetase. We hypothesize that ACN1 recycles free acetate to acetyl-CoA within peroxisomes in order that carbon remains fed into the glyoxylate cycle. When ACN1 is not present, carbon in the form of acetate can leak out of peroxisomes and is reactivated to acetyl-CoA within the cytosol. Kinetic models incorporating estimates of carbon input and pathway dynamics from a variety of literature sources have proven useful in explaining how ACN1 may prevent the carbon leak and even contribute to the control of peroxisomal carbon metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings.

ACN1 (acetate non-utilizing 1) is a short-chain acyl-CoA synthetase which recycles free acetate to acetyl-CoA in peroxisomes of Arabidopsis. Pulse-chase [2-(13)C]acetate feeding of the mutant acn1-2 revealed that acetate accumulation and assimilation were no different to that of wild-type, Col-7. However, the lack of acn1-2 led to a decrease of nearly 50% in (13)C-labelling of glutamine, a majo...

متن کامل

Transport Proteins Regulate the Flux of Metabolites and Cofactors Across the Membrane of Plant Peroxisomes

In land plants, peroxisomes play key roles in various metabolic pathways, including the most prominent examples, that is lipid mobilization and photorespiration. Given the large number of substrates that are exchanged across the peroxisomal membrane, a wide spectrum of metabolite and cofactor transporters is required and needs to be efficiently coordinated. These peroxisomal transport proteins ...

متن کامل

The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana.

Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of ...

متن کامل

The Roles of b-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana

Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana. This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid b-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of...

متن کامل

Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana.

In plants and other eukaryotes, long-chain acyl-CoAs are assumed to be imported into peroxisomes for beta-oxidation by an ATP binding cassette (ABC) transporter. However, two genes in Arabidopsis thaliana, LACS6 and LACS7, encode peroxisomal long-chain acyl-CoA synthetase (LACS) isozymes. To investigate the biochemical and biological roles of peroxisomal LACS, we identified T-DNA knockout mutan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 38 5  شماره 

صفحات  -

تاریخ انتشار 2010